e1000: Prevent reset task killing itself.
[omap4-v4l2-camera:nabilhcs-omap4-v4l2-camera.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168                                      bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188         "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191                      pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static struct pci_error_handlers e1000_err_handler = {
196         .error_detected = e1000_io_error_detected,
197         .slot_reset = e1000_io_slot_reset,
198         .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202         .name     = e1000_driver_name,
203         .id_table = e1000_pci_tbl,
204         .probe    = e1000_probe,
205         .remove   = __devexit_p(e1000_remove),
206 #ifdef CONFIG_PM
207         /* Power Management Hooks */
208         .suspend  = e1000_suspend,
209         .resume   = e1000_resume,
210 #endif
211         .shutdown = e1000_shutdown,
212         .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226  * e1000_get_hw_dev - return device
227  * used by hardware layer to print debugging information
228  *
229  **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232         struct e1000_adapter *adapter = hw->back;
233         return adapter->netdev;
234 }
235
236 /**
237  * e1000_init_module - Driver Registration Routine
238  *
239  * e1000_init_module is the first routine called when the driver is
240  * loaded. All it does is register with the PCI subsystem.
241  **/
242
243 static int __init e1000_init_module(void)
244 {
245         int ret;
246         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248         pr_info("%s\n", e1000_copyright);
249
250         ret = pci_register_driver(&e1000_driver);
251         if (copybreak != COPYBREAK_DEFAULT) {
252                 if (copybreak == 0)
253                         pr_info("copybreak disabled\n");
254                 else
255                         pr_info("copybreak enabled for "
256                                    "packets <= %u bytes\n", copybreak);
257         }
258         return ret;
259 }
260
261 module_init(e1000_init_module);
262
263 /**
264  * e1000_exit_module - Driver Exit Cleanup Routine
265  *
266  * e1000_exit_module is called just before the driver is removed
267  * from memory.
268  **/
269
270 static void __exit e1000_exit_module(void)
271 {
272         pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279         struct net_device *netdev = adapter->netdev;
280         irq_handler_t handler = e1000_intr;
281         int irq_flags = IRQF_SHARED;
282         int err;
283
284         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285                           netdev);
286         if (err) {
287                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288         }
289
290         return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296
297         free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307         struct e1000_hw *hw = &adapter->hw;
308
309         ew32(IMC, ~0);
310         E1000_WRITE_FLUSH();
311         synchronize_irq(adapter->pdev->irq);
312 }
313
314 /**
315  * e1000_irq_enable - Enable default interrupt generation settings
316  * @adapter: board private structure
317  **/
318
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321         struct e1000_hw *hw = &adapter->hw;
322
323         ew32(IMS, IMS_ENABLE_MASK);
324         E1000_WRITE_FLUSH();
325 }
326
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329         struct e1000_hw *hw = &adapter->hw;
330         struct net_device *netdev = adapter->netdev;
331         u16 vid = hw->mng_cookie.vlan_id;
332         u16 old_vid = adapter->mng_vlan_id;
333
334         if (!e1000_vlan_used(adapter))
335                 return;
336
337         if (!test_bit(vid, adapter->active_vlans)) {
338                 if (hw->mng_cookie.status &
339                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340                         e1000_vlan_rx_add_vid(netdev, vid);
341                         adapter->mng_vlan_id = vid;
342                 } else {
343                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344                 }
345                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346                     (vid != old_vid) &&
347                     !test_bit(old_vid, adapter->active_vlans))
348                         e1000_vlan_rx_kill_vid(netdev, old_vid);
349         } else {
350                 adapter->mng_vlan_id = vid;
351         }
352 }
353
354 static void e1000_init_manageability(struct e1000_adapter *adapter)
355 {
356         struct e1000_hw *hw = &adapter->hw;
357
358         if (adapter->en_mng_pt) {
359                 u32 manc = er32(MANC);
360
361                 /* disable hardware interception of ARP */
362                 manc &= ~(E1000_MANC_ARP_EN);
363
364                 ew32(MANC, manc);
365         }
366 }
367
368 static void e1000_release_manageability(struct e1000_adapter *adapter)
369 {
370         struct e1000_hw *hw = &adapter->hw;
371
372         if (adapter->en_mng_pt) {
373                 u32 manc = er32(MANC);
374
375                 /* re-enable hardware interception of ARP */
376                 manc |= E1000_MANC_ARP_EN;
377
378                 ew32(MANC, manc);
379         }
380 }
381
382 /**
383  * e1000_configure - configure the hardware for RX and TX
384  * @adapter = private board structure
385  **/
386 static void e1000_configure(struct e1000_adapter *adapter)
387 {
388         struct net_device *netdev = adapter->netdev;
389         int i;
390
391         e1000_set_rx_mode(netdev);
392
393         e1000_restore_vlan(adapter);
394         e1000_init_manageability(adapter);
395
396         e1000_configure_tx(adapter);
397         e1000_setup_rctl(adapter);
398         e1000_configure_rx(adapter);
399         /* call E1000_DESC_UNUSED which always leaves
400          * at least 1 descriptor unused to make sure
401          * next_to_use != next_to_clean */
402         for (i = 0; i < adapter->num_rx_queues; i++) {
403                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404                 adapter->alloc_rx_buf(adapter, ring,
405                                       E1000_DESC_UNUSED(ring));
406         }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411         struct e1000_hw *hw = &adapter->hw;
412
413         /* hardware has been reset, we need to reload some things */
414         e1000_configure(adapter);
415
416         clear_bit(__E1000_DOWN, &adapter->flags);
417
418         napi_enable(&adapter->napi);
419
420         e1000_irq_enable(adapter);
421
422         netif_wake_queue(adapter->netdev);
423
424         /* fire a link change interrupt to start the watchdog */
425         ew32(ICS, E1000_ICS_LSC);
426         return 0;
427 }
428
429 /**
430  * e1000_power_up_phy - restore link in case the phy was powered down
431  * @adapter: address of board private structure
432  *
433  * The phy may be powered down to save power and turn off link when the
434  * driver is unloaded and wake on lan is not enabled (among others)
435  * *** this routine MUST be followed by a call to e1000_reset ***
436  *
437  **/
438
439 void e1000_power_up_phy(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442         u16 mii_reg = 0;
443
444         /* Just clear the power down bit to wake the phy back up */
445         if (hw->media_type == e1000_media_type_copper) {
446                 /* according to the manual, the phy will retain its
447                  * settings across a power-down/up cycle */
448                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449                 mii_reg &= ~MII_CR_POWER_DOWN;
450                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451         }
452 }
453
454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
455 {
456         struct e1000_hw *hw = &adapter->hw;
457
458         /* Power down the PHY so no link is implied when interface is down *
459          * The PHY cannot be powered down if any of the following is true *
460          * (a) WoL is enabled
461          * (b) AMT is active
462          * (c) SoL/IDER session is active */
463         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464            hw->media_type == e1000_media_type_copper) {
465                 u16 mii_reg = 0;
466
467                 switch (hw->mac_type) {
468                 case e1000_82540:
469                 case e1000_82545:
470                 case e1000_82545_rev_3:
471                 case e1000_82546:
472                 case e1000_ce4100:
473                 case e1000_82546_rev_3:
474                 case e1000_82541:
475                 case e1000_82541_rev_2:
476                 case e1000_82547:
477                 case e1000_82547_rev_2:
478                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
479                                 goto out;
480                         break;
481                 default:
482                         goto out;
483                 }
484                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485                 mii_reg |= MII_CR_POWER_DOWN;
486                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487                 msleep(1);
488         }
489 out:
490         return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495         set_bit(__E1000_DOWN, &adapter->flags);
496
497         /* Only kill reset task if adapter is not resetting */
498         if (!test_bit(__E1000_RESETTING, &adapter->flags))
499                 cancel_work_sync(&adapter->reset_task);
500
501         cancel_delayed_work_sync(&adapter->watchdog_task);
502         cancel_delayed_work_sync(&adapter->phy_info_task);
503         cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508         struct e1000_hw *hw = &adapter->hw;
509         struct net_device *netdev = adapter->netdev;
510         u32 rctl, tctl;
511
512
513         /* disable receives in the hardware */
514         rctl = er32(RCTL);
515         ew32(RCTL, rctl & ~E1000_RCTL_EN);
516         /* flush and sleep below */
517
518         netif_tx_disable(netdev);
519
520         /* disable transmits in the hardware */
521         tctl = er32(TCTL);
522         tctl &= ~E1000_TCTL_EN;
523         ew32(TCTL, tctl);
524         /* flush both disables and wait for them to finish */
525         E1000_WRITE_FLUSH();
526         msleep(10);
527
528         napi_disable(&adapter->napi);
529
530         e1000_irq_disable(adapter);
531
532         /*
533          * Setting DOWN must be after irq_disable to prevent
534          * a screaming interrupt.  Setting DOWN also prevents
535          * tasks from rescheduling.
536          */
537         e1000_down_and_stop(adapter);
538
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542
543         e1000_reset(adapter);
544         e1000_clean_all_tx_rings(adapter);
545         e1000_clean_all_rx_rings(adapter);
546 }
547
548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
549 {
550         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551                 msleep(1);
552         mutex_lock(&adapter->mutex);
553         e1000_down(adapter);
554         e1000_up(adapter);
555         mutex_unlock(&adapter->mutex);
556         clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561         /* if rtnl_lock is not held the call path is bogus */
562         ASSERT_RTNL();
563         WARN_ON(in_interrupt());
564         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565                 msleep(1);
566         e1000_down(adapter);
567         e1000_up(adapter);
568         clear_bit(__E1000_RESETTING, &adapter->flags);
569 }
570
571 void e1000_reset(struct e1000_adapter *adapter)
572 {
573         struct e1000_hw *hw = &adapter->hw;
574         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575         bool legacy_pba_adjust = false;
576         u16 hwm;
577
578         /* Repartition Pba for greater than 9k mtu
579          * To take effect CTRL.RST is required.
580          */
581
582         switch (hw->mac_type) {
583         case e1000_82542_rev2_0:
584         case e1000_82542_rev2_1:
585         case e1000_82543:
586         case e1000_82544:
587         case e1000_82540:
588         case e1000_82541:
589         case e1000_82541_rev_2:
590                 legacy_pba_adjust = true;
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82545:
594         case e1000_82545_rev_3:
595         case e1000_82546:
596         case e1000_ce4100:
597         case e1000_82546_rev_3:
598                 pba = E1000_PBA_48K;
599                 break;
600         case e1000_82547:
601         case e1000_82547_rev_2:
602                 legacy_pba_adjust = true;
603                 pba = E1000_PBA_30K;
604                 break;
605         case e1000_undefined:
606         case e1000_num_macs:
607                 break;
608         }
609
610         if (legacy_pba_adjust) {
611                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612                         pba -= 8; /* allocate more FIFO for Tx */
613
614                 if (hw->mac_type == e1000_82547) {
615                         adapter->tx_fifo_head = 0;
616                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617                         adapter->tx_fifo_size =
618                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619                         atomic_set(&adapter->tx_fifo_stall, 0);
620                 }
621         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
622                 /* adjust PBA for jumbo frames */
623                 ew32(PBA, pba);
624
625                 /* To maintain wire speed transmits, the Tx FIFO should be
626                  * large enough to accommodate two full transmit packets,
627                  * rounded up to the next 1KB and expressed in KB.  Likewise,
628                  * the Rx FIFO should be large enough to accommodate at least
629                  * one full receive packet and is similarly rounded up and
630                  * expressed in KB. */
631                 pba = er32(PBA);
632                 /* upper 16 bits has Tx packet buffer allocation size in KB */
633                 tx_space = pba >> 16;
634                 /* lower 16 bits has Rx packet buffer allocation size in KB */
635                 pba &= 0xffff;
636                 /*
637                  * the tx fifo also stores 16 bytes of information about the tx
638                  * but don't include ethernet FCS because hardware appends it
639                  */
640                 min_tx_space = (hw->max_frame_size +
641                                 sizeof(struct e1000_tx_desc) -
642                                 ETH_FCS_LEN) * 2;
643                 min_tx_space = ALIGN(min_tx_space, 1024);
644                 min_tx_space >>= 10;
645                 /* software strips receive CRC, so leave room for it */
646                 min_rx_space = hw->max_frame_size;
647                 min_rx_space = ALIGN(min_rx_space, 1024);
648                 min_rx_space >>= 10;
649
650                 /* If current Tx allocation is less than the min Tx FIFO size,
651                  * and the min Tx FIFO size is less than the current Rx FIFO
652                  * allocation, take space away from current Rx allocation */
653                 if (tx_space < min_tx_space &&
654                     ((min_tx_space - tx_space) < pba)) {
655                         pba = pba - (min_tx_space - tx_space);
656
657                         /* PCI/PCIx hardware has PBA alignment constraints */
658                         switch (hw->mac_type) {
659                         case e1000_82545 ... e1000_82546_rev_3:
660                                 pba &= ~(E1000_PBA_8K - 1);
661                                 break;
662                         default:
663                                 break;
664                         }
665
666                         /* if short on rx space, rx wins and must trump tx
667                          * adjustment or use Early Receive if available */
668                         if (pba < min_rx_space)
669                                 pba = min_rx_space;
670                 }
671         }
672
673         ew32(PBA, pba);
674
675         /*
676          * flow control settings:
677          * The high water mark must be low enough to fit one full frame
678          * (or the size used for early receive) above it in the Rx FIFO.
679          * Set it to the lower of:
680          * - 90% of the Rx FIFO size, and
681          * - the full Rx FIFO size minus the early receive size (for parts
682          *   with ERT support assuming ERT set to E1000_ERT_2048), or
683          * - the full Rx FIFO size minus one full frame
684          */
685         hwm = min(((pba << 10) * 9 / 10),
686                   ((pba << 10) - hw->max_frame_size));
687
688         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
689         hw->fc_low_water = hw->fc_high_water - 8;
690         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691         hw->fc_send_xon = 1;
692         hw->fc = hw->original_fc;
693
694         /* Allow time for pending master requests to run */
695         e1000_reset_hw(hw);
696         if (hw->mac_type >= e1000_82544)
697                 ew32(WUC, 0);
698
699         if (e1000_init_hw(hw))
700                 e_dev_err("Hardware Error\n");
701         e1000_update_mng_vlan(adapter);
702
703         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704         if (hw->mac_type >= e1000_82544 &&
705             hw->autoneg == 1 &&
706             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707                 u32 ctrl = er32(CTRL);
708                 /* clear phy power management bit if we are in gig only mode,
709                  * which if enabled will attempt negotiation to 100Mb, which
710                  * can cause a loss of link at power off or driver unload */
711                 ctrl &= ~E1000_CTRL_SWDPIN3;
712                 ew32(CTRL, ctrl);
713         }
714
715         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718         e1000_reset_adaptive(hw);
719         e1000_phy_get_info(hw, &adapter->phy_info);
720
721         e1000_release_manageability(adapter);
722 }
723
724 /**
725  *  Dump the eeprom for users having checksum issues
726  **/
727 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730         struct ethtool_eeprom eeprom;
731         const struct ethtool_ops *ops = netdev->ethtool_ops;
732         u8 *data;
733         int i;
734         u16 csum_old, csum_new = 0;
735
736         eeprom.len = ops->get_eeprom_len(netdev);
737         eeprom.offset = 0;
738
739         data = kmalloc(eeprom.len, GFP_KERNEL);
740         if (!data)
741                 return;
742
743         ops->get_eeprom(netdev, &eeprom, data);
744
745         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
746                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
747         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
748                 csum_new += data[i] + (data[i + 1] << 8);
749         csum_new = EEPROM_SUM - csum_new;
750
751         pr_err("/*********************/\n");
752         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
753         pr_err("Calculated              : 0x%04x\n", csum_new);
754
755         pr_err("Offset    Values\n");
756         pr_err("========  ======\n");
757         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
758
759         pr_err("Include this output when contacting your support provider.\n");
760         pr_err("This is not a software error! Something bad happened to\n");
761         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
762         pr_err("result in further problems, possibly loss of data,\n");
763         pr_err("corruption or system hangs!\n");
764         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
765         pr_err("which is invalid and requires you to set the proper MAC\n");
766         pr_err("address manually before continuing to enable this network\n");
767         pr_err("device. Please inspect the EEPROM dump and report the\n");
768         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
769         pr_err("/*********************/\n");
770
771         kfree(data);
772 }
773
774 /**
775  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
776  * @pdev: PCI device information struct
777  *
778  * Return true if an adapter needs ioport resources
779  **/
780 static int e1000_is_need_ioport(struct pci_dev *pdev)
781 {
782         switch (pdev->device) {
783         case E1000_DEV_ID_82540EM:
784         case E1000_DEV_ID_82540EM_LOM:
785         case E1000_DEV_ID_82540EP:
786         case E1000_DEV_ID_82540EP_LOM:
787         case E1000_DEV_ID_82540EP_LP:
788         case E1000_DEV_ID_82541EI:
789         case E1000_DEV_ID_82541EI_MOBILE:
790         case E1000_DEV_ID_82541ER:
791         case E1000_DEV_ID_82541ER_LOM:
792         case E1000_DEV_ID_82541GI:
793         case E1000_DEV_ID_82541GI_LF:
794         case E1000_DEV_ID_82541GI_MOBILE:
795         case E1000_DEV_ID_82544EI_COPPER:
796         case E1000_DEV_ID_82544EI_FIBER:
797         case E1000_DEV_ID_82544GC_COPPER:
798         case E1000_DEV_ID_82544GC_LOM:
799         case E1000_DEV_ID_82545EM_COPPER:
800         case E1000_DEV_ID_82545EM_FIBER:
801         case E1000_DEV_ID_82546EB_COPPER:
802         case E1000_DEV_ID_82546EB_FIBER:
803         case E1000_DEV_ID_82546EB_QUAD_COPPER:
804                 return true;
805         default:
806                 return false;
807         }
808 }
809
810 static netdev_features_t e1000_fix_features(struct net_device *netdev,
811         netdev_features_t features)
812 {
813         /*
814          * Since there is no support for separate rx/tx vlan accel
815          * enable/disable make sure tx flag is always in same state as rx.
816          */
817         if (features & NETIF_F_HW_VLAN_RX)
818                 features |= NETIF_F_HW_VLAN_TX;
819         else
820                 features &= ~NETIF_F_HW_VLAN_TX;
821
822         return features;
823 }
824
825 static int e1000_set_features(struct net_device *netdev,
826         netdev_features_t features)
827 {
828         struct e1000_adapter *adapter = netdev_priv(netdev);
829         netdev_features_t changed = features ^ netdev->features;
830
831         if (changed & NETIF_F_HW_VLAN_RX)
832                 e1000_vlan_mode(netdev, features);
833
834         if (!(changed & NETIF_F_RXCSUM))
835                 return 0;
836
837         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
838
839         if (netif_running(netdev))
840                 e1000_reinit_locked(adapter);
841         else
842                 e1000_reset(adapter);
843
844         return 0;
845 }
846
847 static const struct net_device_ops e1000_netdev_ops = {
848         .ndo_open               = e1000_open,
849         .ndo_stop               = e1000_close,
850         .ndo_start_xmit         = e1000_xmit_frame,
851         .ndo_get_stats          = e1000_get_stats,
852         .ndo_set_rx_mode        = e1000_set_rx_mode,
853         .ndo_set_mac_address    = e1000_set_mac,
854         .ndo_tx_timeout         = e1000_tx_timeout,
855         .ndo_change_mtu         = e1000_change_mtu,
856         .ndo_do_ioctl           = e1000_ioctl,
857         .ndo_validate_addr      = eth_validate_addr,
858         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
859         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
860 #ifdef CONFIG_NET_POLL_CONTROLLER
861         .ndo_poll_controller    = e1000_netpoll,
862 #endif
863         .ndo_fix_features       = e1000_fix_features,
864         .ndo_set_features       = e1000_set_features,
865 };
866
867 /**
868  * e1000_init_hw_struct - initialize members of hw struct
869  * @adapter: board private struct
870  * @hw: structure used by e1000_hw.c
871  *
872  * Factors out initialization of the e1000_hw struct to its own function
873  * that can be called very early at init (just after struct allocation).
874  * Fields are initialized based on PCI device information and
875  * OS network device settings (MTU size).
876  * Returns negative error codes if MAC type setup fails.
877  */
878 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
879                                 struct e1000_hw *hw)
880 {
881         struct pci_dev *pdev = adapter->pdev;
882
883         /* PCI config space info */
884         hw->vendor_id = pdev->vendor;
885         hw->device_id = pdev->device;
886         hw->subsystem_vendor_id = pdev->subsystem_vendor;
887         hw->subsystem_id = pdev->subsystem_device;
888         hw->revision_id = pdev->revision;
889
890         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
891
892         hw->max_frame_size = adapter->netdev->mtu +
893                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
894         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
895
896         /* identify the MAC */
897         if (e1000_set_mac_type(hw)) {
898                 e_err(probe, "Unknown MAC Type\n");
899                 return -EIO;
900         }
901
902         switch (hw->mac_type) {
903         default:
904                 break;
905         case e1000_82541:
906         case e1000_82547:
907         case e1000_82541_rev_2:
908         case e1000_82547_rev_2:
909                 hw->phy_init_script = 1;
910                 break;
911         }
912
913         e1000_set_media_type(hw);
914         e1000_get_bus_info(hw);
915
916         hw->wait_autoneg_complete = false;
917         hw->tbi_compatibility_en = true;
918         hw->adaptive_ifs = true;
919
920         /* Copper options */
921
922         if (hw->media_type == e1000_media_type_copper) {
923                 hw->mdix = AUTO_ALL_MODES;
924                 hw->disable_polarity_correction = false;
925                 hw->master_slave = E1000_MASTER_SLAVE;
926         }
927
928         return 0;
929 }
930
931 /**
932  * e1000_probe - Device Initialization Routine
933  * @pdev: PCI device information struct
934  * @ent: entry in e1000_pci_tbl
935  *
936  * Returns 0 on success, negative on failure
937  *
938  * e1000_probe initializes an adapter identified by a pci_dev structure.
939  * The OS initialization, configuring of the adapter private structure,
940  * and a hardware reset occur.
941  **/
942 static int __devinit e1000_probe(struct pci_dev *pdev,
943                                  const struct pci_device_id *ent)
944 {
945         struct net_device *netdev;
946         struct e1000_adapter *adapter;
947         struct e1000_hw *hw;
948
949         static int cards_found = 0;
950         static int global_quad_port_a = 0; /* global ksp3 port a indication */
951         int i, err, pci_using_dac;
952         u16 eeprom_data = 0;
953         u16 tmp = 0;
954         u16 eeprom_apme_mask = E1000_EEPROM_APME;
955         int bars, need_ioport;
956
957         /* do not allocate ioport bars when not needed */
958         need_ioport = e1000_is_need_ioport(pdev);
959         if (need_ioport) {
960                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
961                 err = pci_enable_device(pdev);
962         } else {
963                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
964                 err = pci_enable_device_mem(pdev);
965         }
966         if (err)
967                 return err;
968
969         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
970         if (err)
971                 goto err_pci_reg;
972
973         pci_set_master(pdev);
974         err = pci_save_state(pdev);
975         if (err)
976                 goto err_alloc_etherdev;
977
978         err = -ENOMEM;
979         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
980         if (!netdev)
981                 goto err_alloc_etherdev;
982
983         SET_NETDEV_DEV(netdev, &pdev->dev);
984
985         pci_set_drvdata(pdev, netdev);
986         adapter = netdev_priv(netdev);
987         adapter->netdev = netdev;
988         adapter->pdev = pdev;
989         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
990         adapter->bars = bars;
991         adapter->need_ioport = need_ioport;
992
993         hw = &adapter->hw;
994         hw->back = adapter;
995
996         err = -EIO;
997         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
998         if (!hw->hw_addr)
999                 goto err_ioremap;
1000
1001         if (adapter->need_ioport) {
1002                 for (i = BAR_1; i <= BAR_5; i++) {
1003                         if (pci_resource_len(pdev, i) == 0)
1004                                 continue;
1005                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1006                                 hw->io_base = pci_resource_start(pdev, i);
1007                                 break;
1008                         }
1009                 }
1010         }
1011
1012         /* make ready for any if (hw->...) below */
1013         err = e1000_init_hw_struct(adapter, hw);
1014         if (err)
1015                 goto err_sw_init;
1016
1017         /*
1018          * there is a workaround being applied below that limits
1019          * 64-bit DMA addresses to 64-bit hardware.  There are some
1020          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1021          */
1022         pci_using_dac = 0;
1023         if ((hw->bus_type == e1000_bus_type_pcix) &&
1024             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1025                 /*
1026                  * according to DMA-API-HOWTO, coherent calls will always
1027                  * succeed if the set call did
1028                  */
1029                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1030                 pci_using_dac = 1;
1031         } else {
1032                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1033                 if (err) {
1034                         pr_err("No usable DMA config, aborting\n");
1035                         goto err_dma;
1036                 }
1037                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1038         }
1039
1040         netdev->netdev_ops = &e1000_netdev_ops;
1041         e1000_set_ethtool_ops(netdev);
1042         netdev->watchdog_timeo = 5 * HZ;
1043         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1044
1045         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1046
1047         adapter->bd_number = cards_found;
1048
1049         /* setup the private structure */
1050
1051         err = e1000_sw_init(adapter);
1052         if (err)
1053                 goto err_sw_init;
1054
1055         err = -EIO;
1056         if (hw->mac_type == e1000_ce4100) {
1057                 hw->ce4100_gbe_mdio_base_virt =
1058                                         ioremap(pci_resource_start(pdev, BAR_1),
1059                                                 pci_resource_len(pdev, BAR_1));
1060
1061                 if (!hw->ce4100_gbe_mdio_base_virt)
1062                         goto err_mdio_ioremap;
1063         }
1064
1065         if (hw->mac_type >= e1000_82543) {
1066                 netdev->hw_features = NETIF_F_SG |
1067                                    NETIF_F_HW_CSUM |
1068                                    NETIF_F_HW_VLAN_RX;
1069                 netdev->features = NETIF_F_HW_VLAN_TX |
1070                                    NETIF_F_HW_VLAN_FILTER;
1071         }
1072
1073         if ((hw->mac_type >= e1000_82544) &&
1074            (hw->mac_type != e1000_82547))
1075                 netdev->hw_features |= NETIF_F_TSO;
1076
1077         netdev->priv_flags |= IFF_SUPP_NOFCS;
1078
1079         netdev->features |= netdev->hw_features;
1080         netdev->hw_features |= NETIF_F_RXCSUM;
1081         netdev->hw_features |= NETIF_F_RXFCS;
1082
1083         if (pci_using_dac) {
1084                 netdev->features |= NETIF_F_HIGHDMA;
1085                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1086         }
1087
1088         netdev->vlan_features |= NETIF_F_TSO;
1089         netdev->vlan_features |= NETIF_F_HW_CSUM;
1090         netdev->vlan_features |= NETIF_F_SG;
1091
1092         netdev->priv_flags |= IFF_UNICAST_FLT;
1093
1094         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1095
1096         /* initialize eeprom parameters */
1097         if (e1000_init_eeprom_params(hw)) {
1098                 e_err(probe, "EEPROM initialization failed\n");
1099                 goto err_eeprom;
1100         }
1101
1102         /* before reading the EEPROM, reset the controller to
1103          * put the device in a known good starting state */
1104
1105         e1000_reset_hw(hw);
1106
1107         /* make sure the EEPROM is good */
1108         if (e1000_validate_eeprom_checksum(hw) < 0) {
1109                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1110                 e1000_dump_eeprom(adapter);
1111                 /*
1112                  * set MAC address to all zeroes to invalidate and temporary
1113                  * disable this device for the user. This blocks regular
1114                  * traffic while still permitting ethtool ioctls from reaching
1115                  * the hardware as well as allowing the user to run the
1116                  * interface after manually setting a hw addr using
1117                  * `ip set address`
1118                  */
1119                 memset(hw->mac_addr, 0, netdev->addr_len);
1120         } else {
1121                 /* copy the MAC address out of the EEPROM */
1122                 if (e1000_read_mac_addr(hw))
1123                         e_err(probe, "EEPROM Read Error\n");
1124         }
1125         /* don't block initalization here due to bad MAC address */
1126         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1127         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1128
1129         if (!is_valid_ether_addr(netdev->perm_addr))
1130                 e_err(probe, "Invalid MAC Address\n");
1131
1132
1133         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1134         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1135                           e1000_82547_tx_fifo_stall_task);
1136         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1137         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1138
1139         e1000_check_options(adapter);
1140
1141         /* Initial Wake on LAN setting
1142          * If APM wake is enabled in the EEPROM,
1143          * enable the ACPI Magic Packet filter
1144          */
1145
1146         switch (hw->mac_type) {
1147         case e1000_82542_rev2_0:
1148         case e1000_82542_rev2_1:
1149         case e1000_82543:
1150                 break;
1151         case e1000_82544:
1152                 e1000_read_eeprom(hw,
1153                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1154                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1155                 break;
1156         case e1000_82546:
1157         case e1000_82546_rev_3:
1158                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1159                         e1000_read_eeprom(hw,
1160                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1161                         break;
1162                 }
1163                 /* Fall Through */
1164         default:
1165                 e1000_read_eeprom(hw,
1166                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1167                 break;
1168         }
1169         if (eeprom_data & eeprom_apme_mask)
1170                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1171
1172         /* now that we have the eeprom settings, apply the special cases
1173          * where the eeprom may be wrong or the board simply won't support
1174          * wake on lan on a particular port */
1175         switch (pdev->device) {
1176         case E1000_DEV_ID_82546GB_PCIE:
1177                 adapter->eeprom_wol = 0;
1178                 break;
1179         case E1000_DEV_ID_82546EB_FIBER:
1180         case E1000_DEV_ID_82546GB_FIBER:
1181                 /* Wake events only supported on port A for dual fiber
1182                  * regardless of eeprom setting */
1183                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1184                         adapter->eeprom_wol = 0;
1185                 break;
1186         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1187                 /* if quad port adapter, disable WoL on all but port A */
1188                 if (global_quad_port_a != 0)
1189                         adapter->eeprom_wol = 0;
1190                 else
1191                         adapter->quad_port_a = true;
1192                 /* Reset for multiple quad port adapters */
1193                 if (++global_quad_port_a == 4)
1194                         global_quad_port_a = 0;
1195                 break;
1196         }
1197
1198         /* initialize the wol settings based on the eeprom settings */
1199         adapter->wol = adapter->eeprom_wol;
1200         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1201
1202         /* Auto detect PHY address */
1203         if (hw->mac_type == e1000_ce4100) {
1204                 for (i = 0; i < 32; i++) {
1205                         hw->phy_addr = i;
1206                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1207                         if (tmp == 0 || tmp == 0xFF) {
1208                                 if (i == 31)
1209                                         goto err_eeprom;
1210                                 continue;
1211                         } else
1212                                 break;
1213                 }
1214         }
1215
1216         /* reset the hardware with the new settings */
1217         e1000_reset(adapter);
1218
1219         strcpy(netdev->name, "eth%d");
1220         err = register_netdev(netdev);
1221         if (err)
1222                 goto err_register;
1223
1224         e1000_vlan_filter_on_off(adapter, false);
1225
1226         /* print bus type/speed/width info */
1227         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1228                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1229                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1230                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1231                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1232                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1233                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1234                netdev->dev_addr);
1235
1236         /* carrier off reporting is important to ethtool even BEFORE open */
1237         netif_carrier_off(netdev);
1238
1239         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1240
1241         cards_found++;
1242         return 0;
1243
1244 err_register:
1245 err_eeprom:
1246         e1000_phy_hw_reset(hw);
1247
1248         if (hw->flash_address)
1249                 iounmap(hw->flash_address);
1250         kfree(adapter->tx_ring);
1251         kfree(adapter->rx_ring);
1252 err_dma:
1253 err_sw_init:
1254 err_mdio_ioremap:
1255         iounmap(hw->ce4100_gbe_mdio_base_virt);
1256         iounmap(hw->hw_addr);
1257 err_ioremap:
1258         free_netdev(netdev);
1259 err_alloc_etherdev:
1260         pci_release_selected_regions(pdev, bars);
1261 err_pci_reg:
1262         pci_disable_device(pdev);
1263         return err;
1264 }
1265
1266 /**
1267  * e1000_remove - Device Removal Routine
1268  * @pdev: PCI device information struct
1269  *
1270  * e1000_remove is called by the PCI subsystem to alert the driver
1271  * that it should release a PCI device.  The could be caused by a
1272  * Hot-Plug event, or because the driver is going to be removed from
1273  * memory.
1274  **/
1275
1276 static void __devexit e1000_remove(struct pci_dev *pdev)
1277 {
1278         struct net_device *netdev = pci_get_drvdata(pdev);
1279         struct e1000_adapter *adapter = netdev_priv(netdev);
1280         struct e1000_hw *hw = &adapter->hw;
1281
1282         e1000_down_and_stop(adapter);
1283         e1000_release_manageability(adapter);
1284
1285         unregister_netdev(netdev);
1286
1287         e1000_phy_hw_reset(hw);
1288
1289         kfree(adapter->tx_ring);
1290         kfree(adapter->rx_ring);
1291
1292         if (hw->mac_type == e1000_ce4100)
1293                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1294         iounmap(hw->hw_addr);
1295         if (hw->flash_address)
1296                 iounmap(hw->flash_address);
1297         pci_release_selected_regions(pdev, adapter->bars);
1298
1299         free_netdev(netdev);
1300
1301         pci_disable_device(pdev);
1302 }
1303
1304 /**
1305  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1306  * @adapter: board private structure to initialize
1307  *
1308  * e1000_sw_init initializes the Adapter private data structure.
1309  * e1000_init_hw_struct MUST be called before this function
1310  **/
1311
1312 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1313 {
1314         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1315
1316         adapter->num_tx_queues = 1;
1317         adapter->num_rx_queues = 1;
1318
1319         if (e1000_alloc_queues(adapter)) {
1320                 e_err(probe, "Unable to allocate memory for queues\n");
1321                 return -ENOMEM;
1322         }
1323
1324         /* Explicitly disable IRQ since the NIC can be in any state. */
1325         e1000_irq_disable(adapter);
1326
1327         spin_lock_init(&adapter->stats_lock);
1328         mutex_init(&adapter->mutex);
1329
1330         set_bit(__E1000_DOWN, &adapter->flags);
1331
1332         return 0;
1333 }
1334
1335 /**
1336  * e1000_alloc_queues - Allocate memory for all rings
1337  * @adapter: board private structure to initialize
1338  *
1339  * We allocate one ring per queue at run-time since we don't know the
1340  * number of queues at compile-time.
1341  **/
1342
1343 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1344 {
1345         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1346                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1347         if (!adapter->tx_ring)
1348                 return -ENOMEM;
1349
1350         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1351                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1352         if (!adapter->rx_ring) {
1353                 kfree(adapter->tx_ring);
1354                 return -ENOMEM;
1355         }
1356
1357         return E1000_SUCCESS;
1358 }
1359
1360 /**
1361  * e1000_open - Called when a network interface is made active
1362  * @netdev: network interface device structure
1363  *
1364  * Returns 0 on success, negative value on failure
1365  *
1366  * The open entry point is called when a network interface is made
1367  * active by the system (IFF_UP).  At this point all resources needed
1368  * for transmit and receive operations are allocated, the interrupt
1369  * handler is registered with the OS, the watchdog task is started,
1370  * and the stack is notified that the interface is ready.
1371  **/
1372
1373 static int e1000_open(struct net_device *netdev)
1374 {
1375         struct e1000_adapter *adapter = netdev_priv(netdev);
1376         struct e1000_hw *hw = &adapter->hw;
1377         int err;
1378
1379         /* disallow open during test */
1380         if (test_bit(__E1000_TESTING, &adapter->flags))
1381                 return -EBUSY;
1382
1383         netif_carrier_off(netdev);
1384
1385         /* allocate transmit descriptors */
1386         err = e1000_setup_all_tx_resources(adapter);
1387         if (err)
1388                 goto err_setup_tx;
1389
1390         /* allocate receive descriptors */
1391         err = e1000_setup_all_rx_resources(adapter);
1392         if (err)
1393                 goto err_setup_rx;
1394
1395         e1000_power_up_phy(adapter);
1396
1397         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1398         if ((hw->mng_cookie.status &
1399                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1400                 e1000_update_mng_vlan(adapter);
1401         }
1402
1403         /* before we allocate an interrupt, we must be ready to handle it.
1404          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1405          * as soon as we call pci_request_irq, so we have to setup our
1406          * clean_rx handler before we do so.  */
1407         e1000_configure(adapter);
1408
1409         err = e1000_request_irq(adapter);
1410         if (err)
1411                 goto err_req_irq;
1412
1413         /* From here on the code is the same as e1000_up() */
1414         clear_bit(__E1000_DOWN, &adapter->flags);
1415
1416         napi_enable(&adapter->napi);
1417
1418         e1000_irq_enable(adapter);
1419
1420         netif_start_queue(netdev);
1421
1422         /* fire a link status change interrupt to start the watchdog */
1423         ew32(ICS, E1000_ICS_LSC);
1424
1425         return E1000_SUCCESS;
1426
1427 err_req_irq:
1428         e1000_power_down_phy(adapter);
1429         e1000_free_all_rx_resources(adapter);
1430 err_setup_rx:
1431         e1000_free_all_tx_resources(adapter);
1432 err_setup_tx:
1433         e1000_reset(adapter);
1434
1435         return err;
1436 }
1437
1438 /**
1439  * e1000_close - Disables a network interface
1440  * @netdev: network interface device structure
1441  *
1442  * Returns 0, this is not allowed to fail
1443  *
1444  * The close entry point is called when an interface is de-activated
1445  * by the OS.  The hardware is still under the drivers control, but
1446  * needs to be disabled.  A global MAC reset is issued to stop the
1447  * hardware, and all transmit and receive resources are freed.
1448  **/
1449
1450 static int e1000_close(struct net_device *netdev)
1451 {
1452         struct e1000_adapter *adapter = netdev_priv(netdev);
1453         struct e1000_hw *hw = &adapter->hw;
1454
1455         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1456         e1000_down(adapter);
1457         e1000_power_down_phy(adapter);
1458         e1000_free_irq(adapter);
1459
1460         e1000_free_all_tx_resources(adapter);
1461         e1000_free_all_rx_resources(adapter);
1462
1463         /* kill manageability vlan ID if supported, but not if a vlan with
1464          * the same ID is registered on the host OS (let 8021q kill it) */
1465         if ((hw->mng_cookie.status &
1466                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1467              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1468                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1469         }
1470
1471         return 0;
1472 }
1473
1474 /**
1475  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1476  * @adapter: address of board private structure
1477  * @start: address of beginning of memory
1478  * @len: length of memory
1479  **/
1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1481                                   unsigned long len)
1482 {
1483         struct e1000_hw *hw = &adapter->hw;
1484         unsigned long begin = (unsigned long)start;
1485         unsigned long end = begin + len;
1486
1487         /* First rev 82545 and 82546 need to not allow any memory
1488          * write location to cross 64k boundary due to errata 23 */
1489         if (hw->mac_type == e1000_82545 ||
1490             hw->mac_type == e1000_ce4100 ||
1491             hw->mac_type == e1000_82546) {
1492                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1493         }
1494
1495         return true;
1496 }
1497
1498 /**
1499  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1500  * @adapter: board private structure
1501  * @txdr:    tx descriptor ring (for a specific queue) to setup
1502  *
1503  * Return 0 on success, negative on failure
1504  **/
1505
1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1507                                     struct e1000_tx_ring *txdr)
1508 {
1509         struct pci_dev *pdev = adapter->pdev;
1510         int size;
1511
1512         size = sizeof(struct e1000_buffer) * txdr->count;
1513         txdr->buffer_info = vzalloc(size);
1514         if (!txdr->buffer_info) {
1515                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1516                       "ring\n");
1517                 return -ENOMEM;
1518         }
1519
1520         /* round up to nearest 4K */
1521
1522         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1523         txdr->size = ALIGN(txdr->size, 4096);
1524
1525         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1526                                         GFP_KERNEL);
1527         if (!txdr->desc) {
1528 setup_tx_desc_die:
1529                 vfree(txdr->buffer_info);
1530                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1531                       "ring\n");
1532                 return -ENOMEM;
1533         }
1534
1535         /* Fix for errata 23, can't cross 64kB boundary */
1536         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1537                 void *olddesc = txdr->desc;
1538                 dma_addr_t olddma = txdr->dma;
1539                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1540                       txdr->size, txdr->desc);
1541                 /* Try again, without freeing the previous */
1542                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1543                                                 &txdr->dma, GFP_KERNEL);
1544                 /* Failed allocation, critical failure */
1545                 if (!txdr->desc) {
1546                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                           olddma);
1548                         goto setup_tx_desc_die;
1549                 }
1550
1551                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1552                         /* give up */
1553                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1554                                           txdr->dma);
1555                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556                                           olddma);
1557                         e_err(probe, "Unable to allocate aligned memory "
1558                               "for the transmit descriptor ring\n");
1559                         vfree(txdr->buffer_info);
1560                         return -ENOMEM;
1561                 } else {
1562                         /* Free old allocation, new allocation was successful */
1563                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1564                                           olddma);
1565                 }
1566         }
1567         memset(txdr->desc, 0, txdr->size);
1568
1569         txdr->next_to_use = 0;
1570         txdr->next_to_clean = 0;
1571
1572         return 0;
1573 }
1574
1575 /**
1576  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1577  *                                (Descriptors) for all queues
1578  * @adapter: board private structure
1579  *
1580  * Return 0 on success, negative on failure
1581  **/
1582
1583 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1584 {
1585         int i, err = 0;
1586
1587         for (i = 0; i < adapter->num_tx_queues; i++) {
1588                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1589                 if (err) {
1590                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1591                         for (i-- ; i >= 0; i--)
1592                                 e1000_free_tx_resources(adapter,
1593                                                         &adapter->tx_ring[i]);
1594                         break;
1595                 }
1596         }
1597
1598         return err;
1599 }
1600
1601 /**
1602  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1603  * @adapter: board private structure
1604  *
1605  * Configure the Tx unit of the MAC after a reset.
1606  **/
1607
1608 static void e1000_configure_tx(struct e1000_adapter *adapter)
1609 {
1610         u64 tdba;
1611         struct e1000_hw *hw = &adapter->hw;
1612         u32 tdlen, tctl, tipg;
1613         u32 ipgr1, ipgr2;
1614
1615         /* Setup the HW Tx Head and Tail descriptor pointers */
1616
1617         switch (adapter->num_tx_queues) {
1618         case 1:
1619         default:
1620                 tdba = adapter->tx_ring[0].dma;
1621                 tdlen = adapter->tx_ring[0].count *
1622                         sizeof(struct e1000_tx_desc);
1623                 ew32(TDLEN, tdlen);
1624                 ew32(TDBAH, (tdba >> 32));
1625                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1626                 ew32(TDT, 0);
1627                 ew32(TDH, 0);
1628                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1629                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1630                 break;
1631         }
1632
1633         /* Set the default values for the Tx Inter Packet Gap timer */
1634         if ((hw->media_type == e1000_media_type_fiber ||
1635              hw->media_type == e1000_media_type_internal_serdes))
1636                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1637         else
1638                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1639
1640         switch (hw->mac_type) {
1641         case e1000_82542_rev2_0:
1642         case e1000_82542_rev2_1:
1643                 tipg = DEFAULT_82542_TIPG_IPGT;
1644                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1645                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1646                 break;
1647         default:
1648                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1649                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1650                 break;
1651         }
1652         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1653         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1654         ew32(TIPG, tipg);
1655
1656         /* Set the Tx Interrupt Delay register */
1657
1658         ew32(TIDV, adapter->tx_int_delay);
1659         if (hw->mac_type >= e1000_82540)
1660                 ew32(TADV, adapter->tx_abs_int_delay);
1661
1662         /* Program the Transmit Control Register */
1663
1664         tctl = er32(TCTL);
1665         tctl &= ~E1000_TCTL_CT;
1666         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1667                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1668
1669         e1000_config_collision_dist(hw);
1670
1671         /* Setup Transmit Descriptor Settings for eop descriptor */
1672         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1673
1674         /* only set IDE if we are delaying interrupts using the timers */
1675         if (adapter->tx_int_delay)
1676                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1677
1678         if (hw->mac_type < e1000_82543)
1679                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1680         else
1681                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1682
1683         /* Cache if we're 82544 running in PCI-X because we'll
1684          * need this to apply a workaround later in the send path. */
1685         if (hw->mac_type == e1000_82544 &&
1686             hw->bus_type == e1000_bus_type_pcix)
1687                 adapter->pcix_82544 = true;
1688
1689         ew32(TCTL, tctl);
1690
1691 }
1692
1693 /**
1694  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1695  * @adapter: board private structure
1696  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1697  *
1698  * Returns 0 on success, negative on failure
1699  **/
1700
1701 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1702                                     struct e1000_rx_ring *rxdr)
1703 {
1704         struct pci_dev *pdev = adapter->pdev;
1705         int size, desc_len;
1706
1707         size = sizeof(struct e1000_buffer) * rxdr->count;
1708         rxdr->buffer_info = vzalloc(size);
1709         if (!rxdr->buffer_info) {
1710                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1711                       "ring\n");
1712                 return -ENOMEM;
1713         }
1714
1715         desc_len = sizeof(struct e1000_rx_desc);
1716
1717         /* Round up to nearest 4K */
1718
1719         rxdr->size = rxdr->count * desc_len;
1720         rxdr->size = ALIGN(rxdr->size, 4096);
1721
1722         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1723                                         GFP_KERNEL);
1724
1725         if (!rxdr->desc) {
1726                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1727                       "ring\n");
1728 setup_rx_desc_die:
1729                 vfree(rxdr->buffer_info);
1730                 return -ENOMEM;
1731         }
1732
1733         /* Fix for errata 23, can't cross 64kB boundary */
1734         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735                 void *olddesc = rxdr->desc;
1736                 dma_addr_t olddma = rxdr->dma;
1737                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1738                       rxdr->size, rxdr->desc);
1739                 /* Try again, without freeing the previous */
1740                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1741                                                 &rxdr->dma, GFP_KERNEL);
1742                 /* Failed allocation, critical failure */
1743                 if (!rxdr->desc) {
1744                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1745                                           olddma);
1746                         e_err(probe, "Unable to allocate memory for the Rx "
1747                               "descriptor ring\n");
1748                         goto setup_rx_desc_die;
1749                 }
1750
1751                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1752                         /* give up */
1753                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1754                                           rxdr->dma);
1755                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1756                                           olddma);
1757                         e_err(probe, "Unable to allocate aligned memory for "
1758                               "the Rx descriptor ring\n");
1759                         goto setup_rx_desc_die;
1760                 } else {
1761                         /* Free old allocation, new allocation was successful */
1762                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1763                                           olddma);
1764                 }
1765         }
1766         memset(rxdr->desc, 0, rxdr->size);
1767
1768         rxdr->next_to_clean = 0;
1769         rxdr->next_to_use = 0;
1770         rxdr->rx_skb_top = NULL;
1771
1772         return 0;
1773 }
1774
1775 /**
1776  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1777  *                                (Descriptors) for all queues
1778  * @adapter: board private structure
1779  *
1780  * Return 0 on success, negative on failure
1781  **/
1782
1783 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1784 {
1785         int i, err = 0;
1786
1787         for (i = 0; i < adapter->num_rx_queues; i++) {
1788                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1789                 if (err) {
1790                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1791                         for (i-- ; i >= 0; i--)
1792                                 e1000_free_rx_resources(adapter,
1793                                                         &adapter->rx_ring[i]);
1794                         break;
1795                 }
1796         }
1797
1798         return err;
1799 }
1800
1801 /**
1802  * e1000_setup_rctl - configure the receive control registers
1803  * @adapter: Board private structure
1804  **/
1805 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1806 {
1807         struct e1000_hw *hw = &adapter->hw;
1808         u32 rctl;
1809
1810         rctl = er32(RCTL);
1811
1812         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1813
1814         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1815                 E1000_RCTL_RDMTS_HALF |
1816                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1817
1818         if (hw->tbi_compatibility_on == 1)
1819                 rctl |= E1000_RCTL_SBP;
1820         else
1821                 rctl &= ~E1000_RCTL_SBP;
1822
1823         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1824                 rctl &= ~E1000_RCTL_LPE;
1825         else
1826                 rctl |= E1000_RCTL_LPE;
1827
1828         /* Setup buffer sizes */
1829         rctl &= ~E1000_RCTL_SZ_4096;
1830         rctl |= E1000_RCTL_BSEX;
1831         switch (adapter->rx_buffer_len) {
1832                 case E1000_RXBUFFER_2048:
1833                 default:
1834                         rctl |= E1000_RCTL_SZ_2048;
1835                         rctl &= ~E1000_RCTL_BSEX;
1836                         break;
1837                 case E1000_RXBUFFER_4096:
1838                         rctl |= E1000_RCTL_SZ_4096;
1839                         break;
1840                 case E1000_RXBUFFER_8192:
1841                         rctl |= E1000_RCTL_SZ_8192;
1842                         break;
1843                 case E1000_RXBUFFER_16384:
1844                         rctl |= E1000_RCTL_SZ_16384;
1845                         break;
1846         }
1847
1848         ew32(RCTL, rctl);
1849 }
1850
1851 /**
1852  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1853  * @adapter: board private structure
1854  *
1855  * Configure the Rx unit of the MAC after a reset.
1856  **/
1857
1858 static void e1000_configure_rx(struct e1000_adapter *adapter)
1859 {
1860         u64 rdba;
1861         struct e1000_hw *hw = &adapter->hw;
1862         u32 rdlen, rctl, rxcsum;
1863
1864         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1865                 rdlen = adapter->rx_ring[0].count *
1866                         sizeof(struct e1000_rx_desc);
1867                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1868                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1869         } else {
1870                 rdlen = adapter->rx_ring[0].count *
1871                         sizeof(struct e1000_rx_desc);
1872                 adapter->clean_rx = e1000_clean_rx_irq;
1873                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1874         }
1875
1876         /* disable receives while setting up the descriptors */
1877         rctl = er32(RCTL);
1878         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1879
1880         /* set the Receive Delay Timer Register */
1881         ew32(RDTR, adapter->rx_int_delay);
1882
1883         if (hw->mac_type >= e1000_82540) {
1884                 ew32(RADV, adapter->rx_abs_int_delay);
1885                 if (adapter->itr_setting != 0)
1886                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1887         }
1888
1889         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1890          * the Base and Length of the Rx Descriptor Ring */
1891         switch (adapter->num_rx_queues) {
1892         case 1:
1893         default:
1894                 rdba = adapter->rx_ring[0].dma;
1895                 ew32(RDLEN, rdlen);
1896                 ew32(RDBAH, (rdba >> 32));
1897                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1898                 ew32(RDT, 0);
1899                 ew32(RDH, 0);
1900                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1901                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1902                 break;
1903         }
1904
1905         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1906         if (hw->mac_type >= e1000_82543) {
1907                 rxcsum = er32(RXCSUM);
1908                 if (adapter->rx_csum)
1909                         rxcsum |= E1000_RXCSUM_TUOFL;
1910                 else
1911                         /* don't need to clear IPPCSE as it defaults to 0 */
1912                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1913                 ew32(RXCSUM, rxcsum);
1914         }
1915
1916         /* Enable Receives */
1917         ew32(RCTL, rctl | E1000_RCTL_EN);
1918 }
1919
1920 /**
1921  * e1000_free_tx_resources - Free Tx Resources per Queue
1922  * @adapter: board private structure
1923  * @tx_ring: Tx descriptor ring for a specific queue
1924  *
1925  * Free all transmit software resources
1926  **/
1927
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929                                     struct e1000_tx_ring *tx_ring)
1930 {
1931         struct pci_dev *pdev = adapter->pdev;
1932
1933         e1000_clean_tx_ring(adapter, tx_ring);
1934
1935         vfree(tx_ring->buffer_info);
1936         tx_ring->buffer_info = NULL;
1937
1938         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939                           tx_ring->dma);
1940
1941         tx_ring->desc = NULL;
1942 }
1943
1944 /**
1945  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946  * @adapter: board private structure
1947  *
1948  * Free all transmit software resources
1949  **/
1950
1951 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1952 {
1953         int i;
1954
1955         for (i = 0; i < adapter->num_tx_queues; i++)
1956                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1957 }
1958
1959 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960                                              struct e1000_buffer *buffer_info)
1961 {
1962         if (buffer_info->dma) {
1963                 if (buffer_info->mapped_as_page)
1964                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965                                        buffer_info->length, DMA_TO_DEVICE);
1966                 else
1967                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968                                          buffer_info->length,
1969                                          DMA_TO_DEVICE);
1970                 buffer_info->dma = 0;
1971         }
1972         if (buffer_info->skb) {
1973                 dev_kfree_skb_any(buffer_info->skb);
1974                 buffer_info->skb = NULL;
1975         }
1976         buffer_info->time_stamp = 0;
1977         /* buffer_info must be completely set up in the transmit path */
1978 }
1979
1980 /**
1981  * e1000_clean_tx_ring - Free Tx Buffers
1982  * @adapter: board private structure
1983  * @tx_ring: ring to be cleaned
1984  **/
1985
1986 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1987                                 struct e1000_tx_ring *tx_ring)
1988 {
1989         struct e1000_hw *hw = &adapter->hw;
1990         struct e1000_buffer *buffer_info;
1991         unsigned long size;
1992         unsigned int i;
1993
1994         /* Free all the Tx ring sk_buffs */
1995
1996         for (i = 0; i < tx_ring->count; i++) {
1997                 buffer_info = &tx_ring->buffer_info[i];
1998                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1999         }
2000
2001         size = sizeof(struct e1000_buffer) * tx_ring->count;
2002         memset(tx_ring->buffer_info, 0, size);
2003
2004         /* Zero out the descriptor ring */
2005
2006         memset(tx_ring->desc, 0, tx_ring->size);
2007
2008         tx_ring->next_to_use = 0;
2009         tx_ring->next_to_clean = 0;
2010         tx_ring->last_tx_tso = false;
2011
2012         writel(0, hw->hw_addr + tx_ring->tdh);
2013         writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015
2016 /**
2017  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018  * @adapter: board private structure
2019  **/
2020
2021 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2022 {
2023         int i;
2024
2025         for (i = 0; i < adapter->num_tx_queues; i++)
2026                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2027 }
2028
2029 /**
2030  * e1000_free_rx_resources - Free Rx Resources
2031  * @adapter: board private structure
2032  * @rx_ring: ring to clean the resources from
2033  *
2034  * Free all receive software resources
2035  **/
2036
2037 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2038                                     struct e1000_rx_ring *rx_ring)
2039 {
2040         struct pci_dev *pdev = adapter->pdev;
2041
2042         e1000_clean_rx_ring(adapter, rx_ring);
2043
2044         vfree(rx_ring->buffer_info);
2045         rx_ring->buffer_info = NULL;
2046
2047         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2048                           rx_ring->dma);
2049
2050         rx_ring->desc = NULL;
2051 }
2052
2053 /**
2054  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2055  * @adapter: board private structure
2056  *
2057  * Free all receive software resources
2058  **/
2059
2060 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2061 {
2062         int i;
2063
2064         for (i = 0; i < adapter->num_rx_queues; i++)
2065                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2066 }
2067
2068 /**
2069  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2070  * @adapter: board private structure
2071  * @rx_ring: ring to free buffers from
2072  **/
2073
2074 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2075                                 struct e1000_rx_ring *rx_ring)
2076 {
2077         struct e1000_hw *hw = &adapter->hw;
2078         struct e1000_buffer *buffer_info;
2079         struct pci_dev *pdev = adapter->pdev;
2080         unsigned long size;
2081         unsigned int i;
2082
2083         /* Free all the Rx ring sk_buffs */
2084         for (i = 0; i < rx_ring->count; i++) {
2085                 buffer_info = &rx_ring->buffer_info[i];
2086                 if (buffer_info->dma &&
2087                     adapter->clean_rx == e1000_clean_rx_irq) {
2088                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2089                                          buffer_info->length,
2090                                          DMA_FROM_DEVICE);
2091                 } else if (buffer_info->dma &&
2092                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2093                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2094                                        buffer_info->length,
2095                                        DMA_FROM_DEVICE);
2096                 }
2097
2098                 buffer_info->dma = 0;
2099                 if (buffer_info->page) {
2100                         put_page(buffer_info->page);
2101                         buffer_info->page = NULL;
2102                 }
2103                 if (buffer_info->skb) {
2104                         dev_kfree_skb(buffer_info->skb);
2105                         buffer_info->skb = NULL;
2106                 }
2107         }
2108
2109         /* there also may be some cached data from a chained receive */
2110         if (rx_ring->rx_skb_top) {
2111                 dev_kfree_skb(rx_ring->rx_skb_top);
2112                 rx_ring->rx_skb_top = NULL;
2113         }
2114
2115         size = sizeof(struct e1000_buffer) * rx_ring->count;
2116         memset(rx_ring->buffer_info, 0, size);
2117
2118         /* Zero out the descriptor ring */
2119         memset(rx_ring->desc, 0, rx_ring->size);
2120
2121         rx_ring->next_to_clean = 0;
2122         rx_ring->next_to_use = 0;
2123
2124         writel(0, hw->hw_addr + rx_ring->rdh);
2125         writel(0, hw->hw_addr + rx_ring->rdt);
2126 }
2127
2128 /**
2129  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2130  * @adapter: board private structure
2131  **/
2132
2133 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2134 {
2135         int i;
2136
2137         for (i = 0; i < adapter->num_rx_queues; i++)
2138                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2139 }
2140
2141 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2142  * and memory write and invalidate disabled for certain operations
2143  */
2144 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2145 {
2146         struct e1000_hw *hw = &adapter->hw;
2147         struct net_device *netdev = adapter->netdev;
2148         u32 rctl;
2149
2150         e1000_pci_clear_mwi(hw);
2151
2152         rctl = er32(RCTL);
2153         rctl |= E1000_RCTL_RST;
2154         ew32(RCTL, rctl);
2155         E1000_WRITE_FLUSH();
2156         mdelay(5);
2157
2158         if (netif_running(netdev))
2159                 e1000_clean_all_rx_rings(adapter);
2160 }
2161
2162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2163 {
2164         struct e1000_hw *hw = &adapter->hw;
2165         struct net_device *netdev = adapter->netdev;
2166         u32 rctl;
2167
2168         rctl = er32(RCTL);
2169         rctl &= ~E1000_RCTL_RST;
2170         ew32(RCTL, rctl);
2171         E1000_WRITE_FLUSH();
2172         mdelay(5);
2173
2174         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2175                 e1000_pci_set_mwi(hw);
2176
2177         if (netif_running(netdev)) {
2178                 /* No need to loop, because 82542 supports only 1 queue */
2179                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2180                 e1000_configure_rx(adapter);
2181                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2182         }
2183 }
2184
2185 /**
2186  * e1000_set_mac - Change the Ethernet Address of the NIC
2187  * @netdev: network interface device structure
2188  * @p: pointer to an address structure
2189  *
2190  * Returns 0 on success, negative on failure
2191  **/
2192
2193 static int e1000_set_mac(struct net_device *netdev, void *p)
2194 {
2195         struct e1000_adapter *adapter = netdev_priv(netdev);
2196         struct e1000_hw *hw = &adapter->hw;
2197         struct sockaddr *addr = p;
2198
2199         if (!is_valid_ether_addr(addr->sa_data))
2200                 return -EADDRNOTAVAIL;
2201
2202         /* 82542 2.0 needs to be in reset to write receive address registers */
2203
2204         if (hw->mac_type == e1000_82542_rev2_0)
2205                 e1000_enter_82542_rst(adapter);
2206
2207         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2208         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2209
2210         e1000_rar_set(hw, hw->mac_addr, 0);
2211
2212         if (hw->mac_type == e1000_82542_rev2_0)
2213                 e1000_leave_82542_rst(adapter);
2214
2215         return 0;
2216 }
2217
2218 /**
2219  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2220  * @netdev: network interface device structure
2221  *
2222  * The set_rx_mode entry point is called whenever the unicast or multicast
2223  * address lists or the network interface flags are updated. This routine is
2224  * responsible for configuring the hardware for proper unicast, multicast,
2225  * promiscuous mode, and all-multi behavior.
2226  **/
2227
2228 static void e1000_set_rx_mode(struct net_device *netdev)
2229 {
2230         struct e1000_adapter *adapter = netdev_priv(netdev);
2231         struct e1000_hw *hw = &adapter->hw;
2232         struct netdev_hw_addr *ha;
2233         bool use_uc = false;
2234         u32 rctl;
2235         u32 hash_value;
2236         int i, rar_entries = E1000_RAR_ENTRIES;
2237         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2238         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2239
2240         if (!mcarray) {
2241                 e_err(probe, "memory allocation failed\n");
2242                 return;
2243         }
2244
2245         /* Check for Promiscuous and All Multicast modes */
2246
2247         rctl = er32(RCTL);
2248
2249         if (netdev->flags & IFF_PROMISC) {
2250                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2251                 rctl &= ~E1000_RCTL_VFE;
2252         } else {
2253                 if (netdev->flags & IFF_ALLMULTI)
2254                         rctl |= E1000_RCTL_MPE;
2255                 else
2256                         rctl &= ~E1000_RCTL_MPE;
2257                 /* Enable VLAN filter if there is a VLAN */
2258                 if (e1000_vlan_used(adapter))
2259                         rctl |= E1000_RCTL_VFE;
2260         }
2261
2262         if (netdev_uc_count(netdev) > rar_entries - 1) {
2263                 rctl |= E1000_RCTL_UPE;
2264         } else if (!(netdev->flags & IFF_PROMISC)) {
2265                 rctl &= ~E1000_RCTL_UPE;
2266                 use_uc = true;
2267         }
2268
2269         ew32(RCTL, rctl);
2270
2271         /* 82542 2.0 needs to be in reset to write receive address registers */
2272
2273         if (hw->mac_type == e1000_82542_rev2_0)
2274                 e1000_enter_82542_rst(adapter);
2275
2276         /* load the first 14 addresses into the exact filters 1-14. Unicast
2277          * addresses take precedence to avoid disabling unicast filtering
2278          * when possible.
2279          *
2280          * RAR 0 is used for the station MAC address
2281          * if there are not 14 addresses, go ahead and clear the filters
2282          */
2283         i = 1;
2284         if (use_uc)
2285                 netdev_for_each_uc_addr(ha, netdev) {
2286                         if (i == rar_entries)
2287                                 break;
2288                         e1000_rar_set(hw, ha->addr, i++);
2289                 }
2290
2291         netdev_for_each_mc_addr(ha, netdev) {
2292                 if (i == rar_entries) {
2293                         /* load any remaining addresses into the hash table */
2294                         u32 hash_reg, hash_bit, mta;
2295                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2296                         hash_reg = (hash_value >> 5) & 0x7F;
2297                         hash_bit = hash_value & 0x1F;
2298                         mta = (1 << hash_bit);
2299                         mcarray[hash_reg] |= mta;
2300                 } else {
2301                         e1000_rar_set(hw, ha->addr, i++);
2302                 }
2303         }
2304
2305         for (; i < rar_entries; i++) {
2306                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2307                 E1000_WRITE_FLUSH();
2308                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);